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A key feature of a general nonlinear partially hyperbolic dynamical system is the
absence of differentiability of its invariant splitting. In this paper, we show that
often partial derivatives of the splitting exist and the splitting depends smoothly
on the dynamical system itself.
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1. INTRODUCTION

The basis for much of smooth chaotic dynamics is the Anosov condition,
also referred to as complete, uniform, exponential hyperbolicity. Under this
condition, there are unique stable and unstable bundles that are invariant
under the dynamics. The bundles are uniquely integrable, and their integral
foliations have smooth leaves.

A major technical obstacle to understanding such a dynamical system—
for instance, proving that it is ergodic, or calculating how its Lyapunov
exponents and entropy vary—arises from the fact that:

Although the invariant bundles are continuous and even obey Hölder
conditions, in general they fail to be differentiable.



Correspondingly, the stable and unstable integral foliations fail to be
differentiable, despite the fact that their leaves are smooth.4 If we denote

4 It was D. V. Anosov who first uncovered and then dealt with this apparently pathological
aspect of the stable and unstable foliations. (2) Furthermore, foliations that have smooth
leaves but fail to be differentiable in the transverse direction can, in general, have behavior
that makes them useless in terms of ergodic theory. See J. Milnor’s article, (10) in which he
produces an invariant foliation whose leafwise zero sets have full Lebesgue measure.

the stable and unstable bundles by E s and Eu, then:

E s is differentiable in the E s direction (because the stable leaves are
smooth), but it is generally nondifferentiable in the transverse Eu direction.

Similarly, Eu is differentiable in the Eu direction but not in the E s

direction. Symbolically, we could express this as existence and continuity of
the partial derivatives:

“E s

“E s and
“Eu

“Eu . (1)

In this paper we generalize to the case that the dynamics are only par-
tially hyperbolic, which means that there is a third invariant bundle, the
center bundle, Ec. The dynamics in the center directions are neutral in
comparison with the stable and unstable behavior. Under fairly general
hypothesis, we show that E s and Eu are differentiable in the Ec direction.
Symbolically, this is expressed as existence and continuity of:

“E s

“Ec and
“Eu

“Ec . (2)

In the partially hyperbolic case, the stable and unstable leaves are
smooth, so (2) can be improved to existence and continuity of

“E s

“Ecs and
“Eu

“Ecu , (3)

where Ecs=Ec À E s, and Ecu=Ec À Eu.
One feature to note in what we do below is that we do not assume that

the center bundle is integrable. Although integrability of Ec is known to
hold in many cases, it is not true when the center’s neutrality is insuffi-
ciently dominated by the hyperbolicity of the stable and unstable bundles.
See ref. 16. Furthermore, even in well-dominated cases, integrability seems
to be a subtle issue. While our results do not assume integrability of the
center, they do assume ‘‘hyperbolic domination’’—the hyperbolic part of f
dominates the center part.
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Partial hyperbolicity is defined in the next section. For the reader
unfamiliar with the definition, there are two key examples to keep in mind.
The first example is the time-1 map of an Anosov flow—for instance, the
geodesic flow on the unit tangent bundle of a negatively curved manifold.
For this diffeomorphism, there are three distinguished subspaces of the
tangent space at every point—the contracting (or stable) subspace, the
expanding (unstable) subspace, and the space spanned by the generating
vector field of the flow. These spaces are invariant under the time-one map
of the flow. Hyperbolic domination is valid because f is an isometry in the
center direction.

The other example to keep in mind is a (potentially) infinite dimen-
sional one. Let F be a smooth family of Anosov diffeomorphisms of a
compact manifold M, such as a smooth one-parameter family of Anosov
diffeomorphisms. (More generally, F could be a smooth family of partially
hyperbolic diffeomorphisms.) Associated to any such family is the evalua-
tion map,

Eval: F× M QF× M

(f, p) W (f, f(p)).

This map is partially hyperbolic (Proposition 7.1), with a center bundle
transverse to the M factor.

Our main result, Theorem A, allows us to address the following ques-
tions about these specific systems. For the time-1 map of the Anosov flow,
the existence and continuity of the partial derivatives in (2) says that the
leaves of the stable (horocyclic) foliation vary differentiably along leaves of
the center foliation. Similarly, the unstable foliation is differentiable along
leaves of the center foliation. While this fact is well-known and easily seen
to hold—because the leaves of the center foliation are orbits of the flow—it
is no longer obvious when the time-1 map is slightly perturbed. Any per-
turbation of this time-1 map remains partially hyperbolic, even though it is
no longer necessarily the time-1 map of a flow. Theorem A implies that the
unstable and stable foliations remain differentiable along leaves of the new
center foliation even though the new center foliation is no longer transver-
sely smooth. Differentiability of the unstable bundle along the center was a
crucial ingredient in proving stable ergodicity for many partially hyperbolic
diffeomorphisms, (5, 11, 12, 16) starting with the time-1 map of a geodesic flow.
It was also an ingredient in the construction of nonuniformly hyperbolic
diffeomorphisms with pathological foliations. (4, 14, 15)

For the partially hyperbolic map Eval, the M-component of an
integral curve tangent to its center bundle is a ‘‘dynamically-defined’’ curve
c in M, and with enough hyperbolic domination, the unstable bundle of f
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can be differentiated along c. We make this notion precise in Theorem B,
which is proved in Section 7. This type of result has been used to show that
Kolmogorov–Sinai entropy and SRB states also vary differentiably with
parameters for Anosov diffeomorphisms and flows. (7, 8, 13) While we have
similar applications in mind for Theorem A, we will content ourselves here
with some general theorems. We describe the main results of this paper in
the following section; the proofs occupy the remaining sections.

In Section 4 we derive explicit series expansions for the partial deriva-
tives in (2).

2. STATEMENTS OF RESULTS

Partial hyperbolicity is a weakening of the Anosov condition that
allows for much more dynamical complexity. A diffeomorphism f is
partially hyperbolic if the tangent bundle to M splits as a Tf-invariant sum:

TM=Eu À Ec À E s,

with at least two of the subbundles in the sum nontrivial, and there exist
constants a < b < 1 < c < d, and a Finsler structure | · | on M such that, for
all p ¥ M and all v ¥ TpM,

v ¥ Eu(p) S d |v| [ |Tp f(v)|

v ¥ Ec(p) S b |v| [ |Tp f(v)| [ c |v|

v ¥ E s(p) S |Tp f(v)| [ a |v|.

The bundles Eu, Ec, and E s are unstable, center, and stable bundles
for f, and we write Tf=Tuf À Tcf À T sf correspondingly. It is not nec-
essary to assume these bundles are continuous in the definition; continuity
follows from invariance and the growth conditions given above. A similar
argument shows that if the constants a, b, c, d are fixed then the splitting is
unique and varies continuously under perturbation of f in the C1 topology;
see, e.g., ref. 6. Equivalent definitions of partial hyperbolicity are given by
Brin and Pesin in ref. 3 and by Hirsch, Pugh, and Shub in ref. 6.

Several classically studied dynamical systems are partially hyperbolic,
including time-t maps of Anosov flows, frame flows for negatively curved
manifolds, and certain algebraic systems.

Recall that the norm, conorm, and bolicity of a linear transformation
T: X Q Y on Banach spaces are defined as

||T||=sup
|x|=1

|Tx|, m(T)= inf
|x|=1

|Tx|, bol(T)=
||T||

m(T)
.
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Here, |x| and |Tx| are the norms of x and Tx in X and Y. The bolicity is
also called the condition number. Partial hyperbolicity can be restated as

sup
p

||Ts
pf|| < min{1, inf

p
m(Tc

pf)} and max{1, sup
p

||Tc
pf||} < inf

p
m(Tu

pf),

where the infima and suprema are taken over all p ¥ M.
Suppose that f: M Q M is a C2 partially hyperbolic diffeomorphism

with splitting Eu À Ec À E s. In general its summands are continuous but
not C1. Here we show that under hyperbolic dominance conditions, Eu and
E s are continuously differentiable in the Ec direction, i.e., “Eu

p/“Ec and
“E s

p/“Ec exist and are continuous functions of p ¥ M. The hyperbolic
dominance conditions are

sup
p

bol(Tc
pf )

m(Tu
pf )

< 1 (4)

and

sup
p

bol(Tc
pf ) ||T s

pf|| < 1. (5)

These conditions are related to the center bunching hypotheses of refs. 11
and 12 for they amount to saying that the center bolicity is so near 1 that it
is overwhelmed by the hyperbolicity of Tuf À T sf.

Theorem A. (4) implies that Eu is continuously differentiable with
respect to Ec, and (5) implies that E s is continuously differentiable with
respect to Ec.

Theorem A is a corollary of a more general result about dominated
splittings—see Theorem 5.1 in Section 5.

Next we discuss differentiating Eu along special curves in M. Let
PH denote the open subset of partially hyperbolic diffeomorphisms in
Diff 2(M). As we stated in the introduction, and as will be proved in
Section 7, the evaluation map

Eval: PH× M QPH× M

(f, p) W (f, f(p))

is partially hyperbolic. Its center bundle is infinite dimensional, and not
necessarily integrable, but there are curves (ft, pt) tangent to it. We say
that the M-component, pt, is a dynamically defined curve in M.
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Example. Let F be a smooth curve of Anosov diffeomorphisms of M,
F={ft}−E < t < E. We check directly that

Eval: F× M Q F× M

(ft, p) W (ft, ft p)

is partially hyperbolic and its dynamically defined curves pt are nothing
more than the curves ht p where ht is the canonical conjugacy from f0 to ft.
This justifies the name ‘‘dynamically defined.’’ By rescaling ft as flt where
l > 0 is small and fixed, we may assume that E=1 and ||ft − f0 ||C1 is small,
−1 < t < 1. Then Eval is a small perturbation of the product F0=id × f0.
Since f0 is Anosov, F0 is partially hyperbolic with splitting

T(F× M)=(0 × Eu) À (TF× 0) À (0 × E s),

where the Anosov splitting of f0 is TM=Eu À E s. Its center foliation W0

has leaves that are the parallel curves F× p, p ¥ M, and there is a unique
nearby Fl-invariant foliation Wl. In fact, by Theorem 7.1 of ref. 6, there is
a unique ‘‘leaf conjugacy’’

H: F× M QF× M

that sends W0-leaves to Wl-leaves, is close to the identity, and is of the form

H(ft, p)=(ft, h(t, p)).

Thus, dynamically defined curves are all of the form h(t, p). Invariance
implies that

Fn(H(F× p))=H(Fn
0(F× p))

for all n ¥ Z. Since H is near the identity map, this implies that p W h(t, p)
is the canonical conjugacy ht from f0 to its perturbation ft.

Now we return to the general case in which ft is a C2 curve in PH,
−E < t < E, with splitting

TM=Eu
t À Ec

t À E s
t .

Suppose that (ft, pt) is tangent to the center bundle of Eval, so that pt is
dynamically defined. In this notation, Eu

t, pt
refers to the fiber of the bundle

Eu
t at the point pt.
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Theorem B. For t near 0, t W Eu
t, pt

is a C1 curve in the Grassmann
of TM provided that Tf0 satisfies the hyperbolic dominance condition (4).
Similarly, (5) implies that t W E s

t, pt
is C1.

Theorem B follows from a more general result, Theorem 7.4, proved in
Section 7. The machinery behind the proofs of Theorems A and B is
Theorem 3.1, a refinement of the C1 Section Theorem from ref. 5 that
handles partial derivatives of a section.

In Section 8, we address the question of when t W Eu
t is differentiable

at t=0. The issue here is of a slightly different nature than that in
Theorems A and B. While t W Eu

t is always continuously differentiable
along dynamically defined paths, the requirement that the constant path
t W p be dynamically defined for all p is a stringent one, satisfied only for
very special families.

If, instead of requiring that t W Eu
t be C1 in a given family, we just ask

that it be differentiable at t=0 but for all families through f0, then the
actual dynamics of f0 becomes irrelevant. It is easy to see that Eu

0 must be
C1 for this property to hold. What is interesting is that nonsmoothness of
Eu

0 is the only obstruction. Building on Theorem B, and using the same
notation, one can show:

Theorem C. Suppose that Eu
0 is a C2 − E subbundle of TM, for all

E > 0, and that f0 satisfies the hyperbolic dominance condition (4). Then
for all p ¥ M, t W Eu

t, p is differentiable at t=0. Furthermore, for any
dynamically defined curve pt, if v is tangent to pt at t=0 then

Eu
t, p − Eu

0, p=1 d
dt
:
t=0

Eu
t, pt

− DpEu
0(v)2 t+O(t1+g),

for some g > 0.

Subsequent to proving Theorem C, we learned of a more general
result, due to Dolgopyat. Instead of a partially hyperbolic splitting, he
assumes a three-way dominated splitting for the curve ft of diffeo-
morphisms,

TM=Rt À St À Tt.

Theorem D (Dolgopyat, ref. 4, Theorem 3). If S0 is a C1 bundle
then for all p ¥ M, t W St, p is differentiable at t=0.
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The notation St, p refers to the fiber of St at the point p. Dominated
splittings are defined in Section 5. In particular, Theorem D applies when S
is Eu, Ec, E s, Ecu, or Ecs. We present an exposition of Dolgopyat’s proof of
Theorem D in Section 8.

3. PARTIAL DERIVATIVES OF AN INVARIANT SECTION

Let

V
F

|Ł V

p
‡ ‡

p

M
f

|Ł M

be a C1 fiber preserving map, where V is a smooth, finite dimensional fiber
bundle over the compact manifold M, and f is a diffeomorphism. In addi-
tion assume that there is a section s: M Q V, invariant under F in the sense
that

F(s(p))=s(f(p))

for all p ¥ M.
In general there is no reason that s is smooth, or even continuous. For

example, if F is the identity map, every section of V is F-invariant. In
ref. 6, we showed that if V is a Banach bundle and F is a fiber contraction
then s is unique and continuous, and furthermore, if F contracts the fiber
sufficiently more sharply than the base then s is of class C r.

Since F preserves fibers, TF preserves the ‘‘vertical’’ subbundle,
Vert … TV whose fiber at v ¥ V is kernel Tvp. We write TVert

v F for the
restriction of TvF to Vertv,

TVert
v F: Vertv Q VertFv .

We assume that TV carries a Finsler structure and that kp=||TVert
sp F|| has

sup
p ¥ M

kp < 1,

which means that F is a fiber contraction in the neighborhood of sM.

Theorem 3.1. Suppose that E … TM is a continuous Tf-invariant
subbundle such that

sup
p

kp

m(TE
p f )

< 1
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where TEf is the restriction of Tf to E. Then s is continuously differen-
tiable in the E-direction in the sense that there is a continuous map
H: E Q TV such that

(a) For each p ¥ M, H: Ep Q TspV is linear.

(b) Tp p H=Id: E Q E.

(c) If c is a C1 arc in M that is everywhere tangent to E then

(s p c) −(t)=H(c −(t)).

In particular, if E is integrable then the restriction of s to each E-leaf is C1.

We refer to H as the partial derivative of s in the E-direction

H=
“s

“E
.

Remark. If, in addition, there exist C r submanifolds everywhere
tangent to E, 1 [ r < ., then C r smoothness of s along E (i.e., along these
manifolds) is implied by

sup
p

kp

m(TE
p f ) r < 1.

Remark. When E is integrable, the proof of Theorem 3.1 is a fairly
simple application of the Invariant Section Theorem of ref. 6. It is the non-
integrable case that requires some new ideas.

Remark. There is a uniformity about “s/“E. (In the integrable case,
this uniformity is automatic.) Fix p ¥ M and extend each w ¥ Ep with
|w| [ 1 to a continuous vector field Xw everywhere subordinate to E, and
do so in a way that depends continuously on w. Let cw be an integral curve
of Xw through p. Since E is only continuous, the integral curve cw need not
be uniquely determined by Xw. Nevertheless, for all p in any fixed C1 chart,
as t Q 0 we have

s p cw(t) − sp
t

Q H(w)

uniformly.
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Remark. Since M is finite dimensional, Peano’s Existence Theorem
implies that there exist C1 arcs everywhere tangent to a continuous plane
field, and thus the hypothesis of assertion (c) in Theorem 3.1 is satisfied. In
the infinite dimensional case, however, Peano’s Theorem fails and (c) could
become vacuous.

Proof of Theorem 3.1. We proceed by the graph transform tech-
niques in ref. 6. Choose a continuous subbundle Hor … TV, complementary
to Vert,

Hor À Vert=TV.

For example, we could introduce a Riemann structure on TV and take
Horv as the orthogonal complement to Vertv. Note that Tp sends each
subspace Horv isomorphically onto TpM, p=pv. With respect to the
horizontal/vertical splitting we write

TvF=rAv 0
Cv Kv

s=rAv : Horv Q HorFv 0
Cv : Horv Q VertFv Kv : Vertv Q VertFv

s.

Let Ē … Hor be the lift of E. That is, Tp sends the plane Ēv iso-
morphically to Ep, p=pv. Since E is Tf-invariant and F covers f, Ē is
A-invariant in the sense that

Ēv

Av
|Ł ĒFv

Tp
‡ ‡

Tp

Ep
Tf

|Ł Efp

commutes.
Let L be the bundle over M whose fiber at p is

Lp=L(Ēsp, Vertsp).

An element in Lp is a linear transformation P: Ēsp Q Vertsp. Let LF be the
graph transform on L that sends P ¥ Lp to

P −=(Csp+KspP)(Asp |Ēsp
)−1 ¥ Lfp.
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Then TF sends the graph of P to the graph of P − and LF is an affine fiber
contraction

L
LF

|Ł L

p
‡ ‡

p

M
f

|Ł M

By Theorem 3.1 in ref. 6, L has a unique LF-invariant section L: M Q L,
and L is continuous. Define Hp : Ep Q TspV by commutativity of

Ēsp

Idp À Lp
||Ł Ēsp À Vertsp

Tp
‡ ‡

Inclusion

Ep

Hp
|||Ł TspV

where Idp is the identity map Ēsp Q Ēsp. Then H: E Q TV is the unique
bundle map such that HE is a TF-invariant subbundle of TsMV,

HE
TF

|Ł HE

Tp
‡ ‡

Tp

E
Tf

|Ł E

commutes, and Tp p H=IdE. We claim that H is the partial derivative of s

in the E-direction.
Let c: (a, b) Q M be a C1 arc such that c is everywhere tangent to E.

To complete the proof of the theorem, we must show that

(s p c) − (t)=H(c −(t)).

For n ¥ Z, set cn=fn
p c and

C=e
n ¥ Z

cn.

This means that we consider the disjoint union of the arcs cn, so if two of
them cross in M, we ignore the crossing in C. The one dimensional mani-
fold C is noncompact; it has countably many components cn. In the same
way, we discretize V as

VC=e
n

V|cn
.
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We equip VC and TC with the Finslers they inherit from V and M. Then
FC=F|VC

is a fiber contraction

VC

FC
|Ł VC

p
‡ ‡

p

C
f

|Ł C

and FC contracts the fiber more sharply than the base since

sup
p

kp

m(TE
p f )

< 1

and TC … E. Furthermore, FC is uniformly C1 bounded since M is
compact. The Invariant Section Theorem (ref. 6, Theorem 3.2) then implies
that VC has a unique FC-invariant section sC, and sC is of class C1.
Furthermore the tangent bundle of sC(C) is the unique nowhere vertical
TFC-invariant line field in TVC.

The restriction of s to C=dn cn is FC-invariant, so by uniqueness

sC=e
n

s|cn
.

We claim that

H(TC)=T(sCC).

Again the reason is uniqueness. We know that T(sCC) is the unique
TFC-invariant, nowhere vertical line field defined over sCC. But commuta-
tivity of

HE
TFC

|Ł HE

H… …H

E
Tf

|Ł E

Inclusion… …Inclusion

TC
Tf

|Ł TC

implies that H(TC) is a second such line field. By uniqueness they are
equal.
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To complete the proof, we show that the line field equality implies the
vector equality

d
dt

s p c(t)=H(c −(t)),

as the theorem asserts. Differentiating c(t)=p p sC p c(t) gives

c −(t)=Tp p TsC(c −(t)).

The vector TsC(c −(t)) lies in the span of H(c −(t)), so there is a real number
c(t) such that TsC(c −(t))=H(c(t) c −(t)). This gives

c −(t)=Tp p H(c(t) c −(t)).

Since Tp p H=IdE we have

c −(t)=c(t) c −(t)

and c(t)=1. Thus

d
dt

sC p c(t)=TsC(c −(t))=H(c(t) c −(t))=H(c −(t)). L

Remark. Above, it is assumed that c is everywhere tangent to E.
One might expect that tangency of c to E at p=c(0) suffices to prove that
(s p c) −(0)=H(c −(0)). This is not so. For example E can be the flow direc-
tion of an Anosov flow. The bundle Eu can be Hölder, but not C1. Say its
Hölder exponent is h < 1. One can construct a C1 curve c(t) which is
tangent to E at p=c(0), but which diverges from E at a rate t1+E. The dif-
ference between Eu

c(t) and Eu
p is then on the order of th+Eh. If E is small this

exponent is < 1, and the map t W Eu
c(t) fails to be differentiable at t=0.

4. A SERIES EXPRESSION FOR ªs/ªE

As above s is the unique F-invariant section and H=IdE À L is its
partial derivative in the E-direction. Naturally, “s/“E depends on the
choice of horizontal subbundle Hor … TV. We use the isomorphism
Tp: Horsp Q TpM to identify the linear map Asp : Horsp Q Hors(fp) with its
Tp-conjugate Tp f. Then, using the canonical isomorphism Vertsp % Vp, we

can express TF=5A
C

0
K
6 as

TspF=rTp f: TpM Q TfpM 0
Cp : TpM Q Vfp Kp : Vp Q Vfp

s .
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Thus, the bundle map LF: L Q L becomes

P W (Cp+KpP) p (TE
fpf−1).

Denote by L0 the zero section of L, and call its N th iterate in L,

LN=(LF)N (L0).

We know that LN Q L uniformly as N Q .. Also, we claim that

LN(p)= C
N − 1

n=0
Kn

p p Cf − n − 1(p) p (TE
p f−n − 1)

where K0=Id and for n \ 1,

Kn
p=Kf − 1(p) p · · · p Kf − n(p) : Vf − n(p) Q Vp.

If N=1 we have

L1(p)=(Cf − 1(p)+Kf − 1(p)P0)(TE
p f−1)=Cf − 1(p)T

E
p f−1

because L0=0 implies that P0=0. Thus, the assertion holds with N=1;
the proof is completed by induction.

Since the partial sums of the infinite series ;.

n=0 Kn
pCf − n − 1(p)T

E
p f−n − 1

converge uniformly to L, we are justified in writing

“s

“E
=H(p)=IdE À C

.

n=0
Kn

pCf − n − 1(p)T
E
p f−n − 1.

5. PROOF OF THEOREM A

In this section we consider a generalization of partial hyperbolicity to
so-called dominated splittings, and we prove Theorem A in the more
general context. We first review the definitions. If T=T1 À T2 with respect
to X=X1 À X2 then hyperbolicity means that

||T2 || < 1 < m(T1).

A weaker condition is that

dom(T)=
||T2 ||

m(T1)
< 1,
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in which case we say that T1 dominates T2, because the former stretches
more than the latter. We write T1 > T2. The constant dom(T) quantifies the
degree of domination; the smaller the domination constant, the stronger
the domination. We say that a splitting TM=R À S is dominated for a
diffeomorphism f: M Q M if

(a) R and S are continuous Tf-invariant subbundles of TM.
(b) There is a Finsler on TM such that for all p ¥ M, TR

p f > TS
p f,

where the notation TXf indicates the restriction of Tf to a subbundle X.
(Compactness implies that supp ||TS

p f||/m(TR
p f ) < 1.)

Remark. In Chapter 5 of ref. 6 we introduced the concept of a
dominated splitting, calling it pseudo-hyperbolicity. Although the term did
not catch on, it is grammatically superior to ‘‘dominated.’’ There is nothing
that dominates the splitting or the tangent map in a dominated splitting.
Rather, one summand of the tangent map dominates the other. Perhaps
one should speak of a de Sade splitting; there is a dominator and a
dominated.

If TM=Eu À Ec À E s is a partially hyperbolic splitting for f: M Q M
then there are two natural dominated splittings

R À S=Eu À (Ec À E s) and R À S=(Eu À Ec) À E s,

but there are others when the bundles Eu, Ec, E s split into dominated
subbundles. Conversely, if TM=Eu À Ec À E s is Tf-invariant, the two
preceding splittings are dominated, and

sup
p

||T s
pf|| < 1 < inf

p
m(Tu

pf )

then f is partially hyperbolic.

Theorem 5.1. Suppose that TM=R À S is a dominated splitting
for the C2 diffeomorphism f: M Q M, and E … TM is a Tf-invariant
subbundle. If

sup
p

dom(Tp f )
m(TE

p f )
< 1, (6)

then R is continuously differentiable with respect to E. (That is, “R/“E
exists and is continuous.)

Theorem A is an immediate corollary of Theorem 5.1, where we set
R=Eu, S=Ec À E s, and E=Ec.
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Proof of Theorem 5.1. Let d be the fiber dimension of R in the
dominated splitting

TM=R À S.

Tf acts naturally on the Grassmann G=G(d, TM) of all d-planes in TM,

Gf: G Q G.

If P is a d-plane in TpM then Gf(P)=Tp f(P). Since f is C2, Gf is a C1

fiber preserving map,

G
Gf

|Ł G

p
‡ ‡

p

M
f

|Ł M

where p sends P … TpM to p. Besides, p W Rp is a Gf-invariant section
of G.

A compact neighborhood Np of Rp in Gp consists of d-planes P such
that P=graph P where P: Rp Q Sp is a linear transformation with ||P|| [ 1.
Give G a Finsler which is the operator norm on each Np and any other
Finsler on the rest of G. Then Gf is a fiber preserving map whose fiber
contraction rate at Rp is

kp=
||TS

p f||
m(TR

p f )
< 1.

Since kp=dom Tp f, Gf contracts the fiber more sharply than f contracts
along E, Theorem 3.1 applies and p W Rp is seen to be a continuously dif-
ferentiable function of p in the E direction. L

6. A SERIES FORMULA FOR ªEu/ªEc

From Section 4 we know that there is a series that expresses “Eu/“Ec.
We write this formula out after making a convenient choice of the
horizontal bundle.

To do so, we coordinatize G near Eu
p as follows. Fix a smooth

Riemann structure on M that exhibits the partial hyperbolicity of f, and
let exp be its exponential map. Abusing notation, we denote by Ru and Rcs

the planes Ru × 0 and 0 × Rcs in Rm. For each p ¥ M, define a linear map
Ip : Rm

Q TpM that carries Ru and Rcs isometrically to Eu
p and Ecs

p . The
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restriction of expp p Ip to a small neighborhood U=Up of 0 in Rm is a
diffeomorphism of U to a neighborhood Q=Qp of p in M,

jp : U Q Q

and

(a) jp(0)=p

(b) T0jp carries Ru and Rcs isometrically to Eu
p and Ecs

p .

(c) If we denote by Eu
pq and Ecs

pq the planes Txjp(Ru) and Txjp(Rcs),
where q=jp(x), then q W Eu

pq À Ecs
pq is a smooth splitting of TQ that

reduces to Eu
p À Ecs

p when p=q.

We now coordinatize G near Eu
p. Let M be the space of (u × cs)-

matrices, thought of as linear transformations X: Ru
Q Rcs. Given

(x, X) ¥ U ×M, let q=jp(x) and consider the linear transformation
S: Eu

pq Q Ecs
pq, defined by commutativity of

Ru X
|Ł Rcs

Txjp‡ ‡
Txjp .

Eu
pq

S
|Ł Ecs

pq

The graph of S is a plane P ¥ G near Eu
p, and thus

Fp : (x, X) W P

is a local trivialization of G at Eu
p.

Because U ×M is a product, T(U ×M) carries a natural horizontal
structure, the horizontal space at (x, X) being

Rm × 0 … Rm ×M=T(x, X)(U ×M).

We define the horizontal space at P=Fp(0, X) ¥ Gp to be

HorP=T(0, X)Fp(Rm × 0).

Writing T(Gf ): TG Q TG with respect to the horizontal/vertical
splitting of TG gives

TP(Gf )=rAP : HorP Q HorGf(P) 0
CP : HorP Q VertGf(P) KP : VertP Q VertGf(P)

s .
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Take P=Eu
p and identify

TEu
p
Gp=VertEu

p
% L(Eu

p, Ecs
p ).

Fix v ¥ Ec
p. Then Cf − n − 1p p Tcf−n − 1(v) is a linear transformation Yn(v):

Eu
f − np Q Ecs

f − np, and Yn(v) is susceptible to the nth power of the linear graph
transform, which converts it to a linear transformation Eu

p Q Ecs
p defined

by

Tcs
f − npfn

p (Yn(v)) p Tu
pf−n.

This is the same as the repeated action of K. (That is, the graph transform
of Tfn is the same as the n th power of the graph transform of Tf.) Thus,
by the formula in Section 4,

“Eu

“Ec (v)= C
.

n=0
Tcs

f − npfn
p (Cf − n − 1p p Tcf−n − 1(v)) p Tu

pf−n.

We also can express this in charts as follows. Writing f in the j-charts
gives

fp=j−1
fp p f p jp

and

(Dfp)x=rDu, u
x fp Dcs, u

x fp

Du, cs
x fp Dcs, cs

x fp

s

where the Du, u
x fp block consists of the partial derivatives of the

u-components of fp with respect to the u-variables, evaluated at the point
x, etc. At x=0, the off-diagonal blocks are zero, while the diagonal blocks
are Tj-conjugate to Tu

pf and Tcs
p f. Thus, the coordinate expression of Gf

becomes

(Gf )p : (x, X) W (fpx, (Du, cs
x fp+(Dcs, cs

x fp) X)(Du, u
x fp+(Dcs, u

x fp)X)−1.

Differentiating this with respect to x and X at the origin (0, 0) ¥ Rm ×M
yields

(D((Gf )p))(0, 0)=rAp : Rm
Q Rm 0

Cp : Rm
QM Kp : MQM

s ,

where Ap is Tj-conjugate to Tp f,

Ap=(T0jfp)−1
p Tp f p T0jp,
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Cp represents the second derivatives of f in the j-charts,

Cp=
“

“x
:
x=0

(Du, cs
x fp)(Du, u

x fp)−1

=(Dx(Du, cs
x fp))(Du, u

x fp)−1

−(Du, cs
x fp)(Du, u

x fp)−1(Dx(Du, u
x fp))(Du, u

x fp)−1,

and, because the off-diagonal blocks vanish at the origin, Kp is
TF-conjugate to the graph transform of Tf,

P W Tcs
p f p P p (Tu

pf )−1.

It is worth noting that the norm of C is uniformly bounded on a
neighborhood of Eu in G because f is C2 and M is compact. Also, this is
clear from the formula expressing C in the j-charts.

7. DEPENDENCE OF Eu, Es ON f : PROOF OF THEOREM B

As has been highlighted in the Katok–Milnor examples, (10) the
conjugacy between an Anosov diffeomorphism and its perturbations is a
smooth function of the perturbation, even though the conjugacies them-
selves are only continuous. As was explained in Section 2, a 1-parameter
family of Anosov diffeomorphisms ft gives rise to a foliation W whose
leaves are C1 graphs of the form (ft, ht p), ht being the conjugacy from f0

to ft. Theorem 3.1 applies perfectly well to this situation, and we conclude
that Eu

htp, E s
htp are C1 functions of t. Theorem B replaces the Anosov con-

dition by partial hyperbolicity.
As above, we denote by PH the open subset of Diff2(M) consisting of

partially hyperbolic diffeomorphisms.

Theorem 7.1. Eval: PH× M QPH× M is partially hyperbolic.

Proof. We denote the splitting for f ¥ PH at p as

TpM=Eu
f, p À Ec

f, p À E s
f, p .

By the usual linear graph transform techniques, the splitting depends con-
tinuously on f.

The space Diff2(M) is a Banach manifold, and its tangent space at f
has a natural description; see ref. 1 for details. Let Xf be the Banach space
of C2 sections of the pullback bundle fgTM, that is, the bundle whose
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fiber over p ¥ M is TfpM. We write f+g to indicate the diffeomorphism
expf p g. That is, if g is a small vector field in Xf, then

(f+g)(p)=expf (g(p))

is in Diff2(M) and is close to f. So a small disk in Xf is a chart for a small
neighborhood of f, and Xf is thereby identified with the tangent space
TfDiff2(M).

The tangent to Eval at (f, p) acts on a vector 5g
v
6 ¥ Tf, p(PH× M) as

Tf, pEval rg
v
s=r g

g(p)+Tp f(v)
s=r IdPH 0

evp Tp f
srg

v
s ,

where evp evaluates the section of fgTM at p. In particular, this implies
that the subbundles Eu=0 × Eu, E s=0 × E s are T Eval-invariant. (The
bundle 0 × Ec is also T Eval-invariant, but it is too small to be the Ec we
want.)

Since the splitting for f ¥ PH depends continuously on f, the hyper-
bolic parts of the T Eval splitting are continuous. Note that the subbundle
T(PH) À 0 is not T Eval-invariant, nor is the subbundle T(PH) À Ec

whose fiber at (f, p) is Xf À Ec
f, p. For if v ¥ Ec

f, p then the T Eval-image

of 5g
v
6 is 5 g

g(p)+Tcfp(v)
6, and this vector need not lie in T(PH) À Ec.

Nevertheless, partial hyperbolicity implies that the T Eval graph transform
defines a fiber contraction of the bundle whose fiber at (f, p) is

L(Xf À Ecu
f, p, E s

f, p),

where Ecu=Eu À Ec. The resulting invariant section is the unique T Eval-
invariant subbundle Ecu … T(PH× M) whose fiber at (f, p) projects
isomorphically onto Xf À Ecu

f, p.
Similarly, we find the unique T Eval−1-invariant subbundle

Ecs … T(PH× M) whose fiber at (f, p) projects isomorphically onto
Xf À Ecs

f, p. Intersecting these bundles, we obtain the T Eval-invariant
subbundle Ec. L

At the end of this section, we give a series expression for Ecu.
It follows from Theorems 3.1 and 7.1 that hyperbolic dominance for a

partially hyperbolic f0 implies that Eu and E s are continuously differen-
tiable along Ec, the center bundle of Eval, but the following result gives is a
useful and more general circumstance in which this occurs.
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Corollary 7.2. If f0 ¥ PH has a dominated splitting R0 À S0 (as
well as its partially hyperbolic splitting Eu

0 À Ec
0 À E s

0) and if it satisfies the
hyperbolic domination condition

sup
p

dom(Tp f0)
m(Tc

pf0)
< 1, (7)

then all f in some neighborhood F of f0 have dominated splittings
Rf À Sf, and Rf is continuously differentiable with respect to Ec, the center
bundle of Eval.

Proof of Corollary 7.2. Recall that dom(Tp f ) is ||TS
p f||/m(TR

p f ).
Clearly for a small F, we have TM=Eu

f À Ec
f À E s

f=Rf À Sf. We first
consider the bundle over F× M whose fiber over (f, p) is the space of
linear maps L(Rp(f ), Sp(f )). Since Eval preserves the factors {f} × M,
its tangent map T Eval induces a graph transform map on this bundle,
covering Eval, which is a fiber contraction, with

kf, p=dom(Tp f ).

The unique invariant section of this graph transform is R=0 À R …

TF× TM.
Now suppose that c is any curve tangent to Ec. Such a curve exists,

since we can always restrict attention to a finite parameter family of dif-
feomorphisms. As in the proof of Theorem 3.1, we obtain differentiability
of R (and hence, of R) along c when kf, p is less than the contraction along
c at (f, p). The latter is bounded below by the conorm of Tf, pEval,
restricted to Ec, which is the minimum of 1 and m(Tcf ). The hyperbolic
dominance condition (7) plus the fact that kf, p < 1 imply that for small F,
this minimum is larger than kf, p, so Theorem 3.1 applies, and we conclude
that R is continuously differentiable along Ec.

Note that Theorem 3.1 needs to be re-proved in this more general
infinite dimensional context, but because its original proof relied on
uniform estimates (this was the only necessity for the compactness
assumption on M), it is not hard to do. L

Theorem B involves differentiating along dynamically defined curves,
so we first prove they exist.

Proposition 7.3. Dynamically defined curves exist. In particular, if
F is a C1 curve in PH then there is a dynamically defined curve pt

through p ¥ M, and its initial Ec component can be prescribed.
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Proof. Let ft ¥ F have splitting Eu
t À Ec

t À E s
t , and let v ¥ Ec

0, p be
given. Choose a continuous vector field V on M that is subordinate to Ec

0

and has V(p)=v. (If v=0 we can choose V=0.)
We identify the manifold F× M with (−1, 1) × M in the obvious way.

Thus, T(F× M)=R × TM. The center bundle Ec of Eval at (t, q) is given
as the graph of a linear map

Pt, q : R × Ec
0, q Q Eus

0, q,

where Eus=Eu À E s. Define a vector field W on (−1, 1) × M by

W(t, q)=
“

“t
+V(q)+Pt, q

1 “

“t
+V(q)2 .

Peano’s Theorem implies that W has an integral curve through (0, p),
(t, pt). The component of its initial tangent in TM is

V(p)+P0, p(V(p)) ¥ Ec
0, p À Eus

0, p ,

so its initial Ec component is V(p)=v. Since W(t, q) ¥ Ec
t, q, for all

(t, q) ¥ (−1, 1) × M, pt is a dynamically defined curve in M. L

As mentioned in the introduction, Theorem B is a corollary of the
following more general result.

Theorem 7.4. Suppose that ft is a C1 curve in PH and ft has a
dominated splitting Rt À St. If f0 satisfies the hyperbolic dominance con-
dition (7) and pt is a dynamically defined curve in M then for small t,
t W Rt, pt

is C1.

Proof. This is an immediate consequence of Corollary 7.2 and
Proposition 7.3. L

Remark. Ec is allowed to be the trivial bundle in Theorem 7.4, in
which case f0 is Anosov. If f0 is Anosov, then, as explained in Section 2,
Ec is uniquely integrable, and p W pt is the homeomorphism conjugating f0

to ft.

Remark. Similarly, if Ec is integrable and tangent to a plaque-
expansive foliation Wc, then Ec is also tangent to a foliation WWWWWWWWWWWc. See ref. 6,
Chapter 7 for a discussion of plaque expansivity. Any center foliation that
is C1 is automatically plaque expansive (ref. 6, Theorem 7.2).
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Remark. If f0 is r-normally-hyperbolic:

||Tcf|| r < m(Tuf ) ||T sf|| < m(Tcf ) r, (8)

then the leaves of WWWWWWWWWWWc are C r. In this case, there exist C r dynamically
defined curves pt. If, in addition, the stronger hyperbolic dominance con-
dition

sup
p

||Tc
pf0 ||

m(Tu
pf0) m(Tc

pf0) r < 1 (9)

holds, then the C r Section Theorem implies that Eu is C r along the leaves of
WWWWWWWWWWWc (and so t W Eu

t, pt
is also C r).

Remark. A simple refinement of the proof shows that t W pt and
t W Rt, pt

are C1+a, where there is a bound on the a-Hölder norm of the
t-derivative that is uniform in p, v. The exponent a is determined by several
dominance conditions.

7.1. A Series Expansion for Ecu

We give a series expression for Ecu as follows. Define the linear map
Pcu

f, p : X À Ecu
f, p Q E s

f, p as the series

Pcu
f, p(g, v)= C

.

k=0
T s

f − kp fk(g s(f−kp)).

Note that the series does not depend on v. The domination conditions
imply that the series converges. Under T Eval, the graph of Pcu

f, p is sent to
the graph of Pcu

f, fp. Hence, by uniqueness,

Ecu
f, p=graph(Pcu

f, p).

In the same way we get a unique T Eval-invariant subbundle Ecs …

T(F× M) whose fiber at (f, p) projects isomorphically onto X À Ecs
f, p,

and Ecs
f, p=graph(Pcs

f, p) where

Pcs
f, p(g, v)= C

.

k=0
Tu

fkp f−k(gu(fkp)).

The intersection of these two subbundles is the center bundle Ec.
Namely, at (f, p), the fiber of Ec is the graph of the map Pc

f, p : X À Ec
f, p

Q (Eu
f, p À E s

f, p), where

Pc
f, p(g, v)= C

.

k=0
Tu

fkp f−k(gu(fkp))+ C
.

k=0
T s

f − kp fk(g s(f−kp)).
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8. WHEN f W Eu
f ACTUALLY IS DIFFERENTIABLE

We described at the beginning of Section 7 how f W Eu
f is generally

not differentiable, even if f is Anosov. In fact, if p W Eu
f0, p fails to be

differentiable in even one direction at p0, then f W Eu
f is not differentiable

at f0. For in that case, it is easy to construct a smooth 1-parameter family
of diffeomorphisms ft : M Q M such that t W Eu

f0, ftp0
is not differentiable

at t=0; but then, for gt=(ft p f0 p f−1
t ), Eu

gt, p0
=Tft(Eu

f0, ftp0
) is not

differentiable at t=0.
It turns out that, under the usual hyperbolic dominance hypothesis,

nonsmoothness of p W Eu
f0

is the only obstruction to differentiability of
f W Eu

f at f0 in all directions.
The results that follow apply to 1-parameter families of C2 diffeo-

morphisms {ft}t ¥ I such that t W ft is a C1 map from I into Diff2(M)—
a C1 family of C2 diffeomorphisms. Since the original proof of Theorem C
is somewhat lengthy and the result is subsumed by Theorem D, we omit the
proof of Theorem C and present instead a proof of Theorem D, following
closely the approach of Dolgopyat in ref. 4.

Assume that for each t ¥ I, ft is partially hyperbolic with splitting

TM=Eu
t À Ec

t À E s
t .

Write

Et=Ec
t Ht=Eu

t À E s
t .

Theorem 8.1. (Theorem D). If E0 is a C1 bundle then the curve of
subbundles t W Et is differentiable with respect to t at t=0, and the deri-
vative (dEt(x)/dt)t=0 depends continuously on x ¥ M.

Remark. Theorem D remains valid, and the proof is the same, if the
partially hyperbolic splitting is replaced by a dominated triple splitting
Rt À St À Tt. Namely, the middle bundle St is differentiable with respect to
t at t=0, provided that Sx, 0 is C1. Similarly, there is nothing special about
the one-dimensionality of the parameter t.

The following facts about weak continuity will be used. We assume
that W is a Banach space, but that W also carries a weak topology. Of
course, if W has finite dimension, the weak and strong topologies coincide.
We have in mind the case that W is a space of operators on the the infinite
dimensional Banach space of continuous sections of a vector bundle and
L=R.
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Definition 8.2. A function h: L Q W is weakly continuous at m ¥ L if
h(l) tends weakly to h(m) and ||h(l)|| stays bounded as l Q m.

Proposition 8.3. (Weak Inversion Rule). If a curve of invertible
operators t W At is weakly continuous at t=0 and if the operators’
conorms are uniformly positive then the curve of inverse operators is also
weakly continuous at t=0.

Proof. Let t W At be the curve of operators, and let V be the Banach
space on which they operate. Then, as t Q 0, At converges weakly to A0

and ||At − A0 || stays bounded. The conorm assumption means that for all
small t, ||A−1

t || [ M.
For each v ¥ V,

|A−1
t (v) − A−1

0 (v)|=|A−1
t p (A0 − At) p A−1

0 (v)|

[ M |v − At(A−1
0 (v))|.

Since A−1
0 (v) is fixed, and At converges weakly to A0, At(A−1

0 (v)) Q v as
t Q 0, which completes the proof that A−1

t converges weakly to A−1
0 as

t Q 0. But also,

|A−1
t (v) − A−1

0 (v)|=|A−1
t p (A0 − At) p A−1

0 (v)|

[ M ||A0 − At || M |v|

implies that ||A−1
t − A−1

0 || stays bounded as t Q 0, and completes the proof
that the inverse curve is weakly continuous. L

Now we return to the splitting TM=Et À Ht, where Ht is the hyper-
bolic part of the partially hyperbolic splitting for ft, and Et is the center
part. We are assuming that E=E0 is a C1 bundle.

Let H2 be a smooth approximation to H0, and express Tft with respect
to the splitting TM=E À H2 as

Tx ft=rAx, t Bx, t

Cx, t Kx, t

s.

Since ft is a C1 curve of C2 diffeomorphisms, A, B, C, K are C1 functions
of x, t. At t=0 we have

Cx, 0=0 and Ax, 0=Tx f0 |E

for all x. Furthermore, when H2 closely approximates H, ||B|| is small.
Consequently, if P: E Q H2 has norm [ 1 then A+BP is invertible and the
norm of its inverse is uniformly bounded. Uniformity refers to P, x, t.
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Let L be the vector bundle over M whose fiber at x is Lx=
L(Ex, H2x). Equipping Lx with the operator norm gives L a Finsler; let
L(1) be its unit ball bundle. Denote by Sec(L) the Banach space of
continuous sections X: M QL, equipped with the sup norm || ||. Its unit
ball is Sec(L(1)).

Tft defines a graph transform

L(1)
(Tft)#
|Ł L

p
‡ ‡

p

M
ft

|Ł M

according to the condition Tx ft(graph P)=graph((Tx ft)#(P)). That is,

(Tx ft)# (P)=(Cx, t+Kx, tP) p (Ax, t+Bx, tP)−1,

which is a linear map Eftx Q H2ftx. The graph transform naturally induces a
nonlinear map on the space of sections,

Gt : Sec(L(1)) Q Sec(L)

such that

Gt(X)=(Tft)# p X p f−1
t .

Proposition 8.4. Gt is uniformly analytic.

Remark. (Tft)# is not analytic, it is only C1. Nevertheless, for
each fixed t, its action on the space of continuous sections is analytic. The
uniformity refers to t.

We prove Proposition 8.4 by factoring Gt into a product of several
analytic maps. Let E, Et and E−1

t denote the bundles whose fibers at x ¥ M
are Ex=L(Ex, Ex), Ex, t=L(Ex, Eftx), and E−1

x, t=L(Eftx, Ex). Let A, At,
and A−1

t denote the invertible elements in E, Et, and E−1
t , and denote sec-

tional inversion as Inv: Sec(A) Q Sec(A), Invt : Sec(At) Q Sec(A−1
t ).

Lemma 8.5. Sectional inversion is uniformly analytic.

Proof. Consider the identity section Id of A. Any section near Id is
inverted by the power series

A−1= C
.

k=0
(Id − A)k,
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and hence sectional inversion is analytic in a neighborhood of the identity
section. For A in a neighborhood of the general section A0 : M QA,
sectional inversion factors according to the commutative diagram

A
Inv near A0
||||Ł A−1

LA −1
0 ‡ …RA0

A−1
0 A

Inv near Id
||||Ł A−1A0

where LA −1
0

and RA0
are left and right multiplication by the sections A−1

0

and A0. Since LA −1
0

and RA0
are continuous linear transformations of the

section spaces, they are analytic, which completes the proof of the lemma for
sections in a neighborhood of the identity section. The corresponding diagram

Sec(At)
Invt near A0

|||||Ł Sec(A−1
t )

LA
−1
0 ‡ …RA0

Sec(A)
Inv near Id

|||||Ł Sec(A)

applies to sectional inversion in the neighborhood of a section A0 : M QAt,
and shows that Invt is analytic.

Uniform analyticity means that for any r, the rth derivative of Invt is
uniformly bounded on sets of sections such that ||A|| and ||A−1|| are
uniformly bounded; this is clear from the higher order chain rule and the
factorization of sectional inversion given above. L

Proof of Proposition 8.4. We have Gt(X)=(Tft)# p X p f−1
t , and

must show that Gt is a uniformly analytic function of X ¥ Sec(L). We
factor Gt as the Cartesian product of two affine maps on section spaces,
followed by inversion in one of the two spaces, followed by sectional linear
composition, all of which is expressed by commutativity of

Sec(L)
Gt

||||||||Ł Sec(L)

Aff1 × Aff2‡ …composition

Sec(Lt) × Sec(At)
Id × Invt

||||Ł Sec(Lt) × Sec(A−1
t )

where Lt is the bundle over M whose fiber at x is L(Ex, H2ftx), and

Aff1(X)=Ct+KtX Aff2(X)=At+BtX.

Uniform analyticity of Gt then follows from Lemma 8.5. L
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The r th-order Taylor expansion of Gt at the zero section is

Gt(X)=Zt+Qt(X)+ · · · +
1
r!

(D rGt)0 (X r)+Rt(X),

where Zt=Gt(0), Qt=(DGt)0.

Proposition 8.6. For small t,

(a) t W Zt is C1.

(b) t W (I − Qt)−1 is weakly continuous.

(c) ||Rt(X)||/||X||2 is uniformly bounded for all small X ¥ Sec(L).

Proof. At the zero section, the 0 th and first derivatives of

Gt(X)=(Ct+KtX)(At+BtX)−1
p f−1

t ,

with respect to X are computed at once as

Zt=(CtA
−1
t ) p f−1

t

Qt(X)=(KtXA−1
t +CtA

−1
t BtXA−1

t ) p f−1
t .

Since ft is a C1 curve of C2 diffeomorphisms, and since the splitting
E À H2 is C1, the curves t W At, t W Bt, t W Ct, t W Kt in the appropriate
bundles are C1. This makes (a) immediate, and also shows that the curve
t W Qt in Sec(L) is weakly continuous.

By inspection, at t=0, Qt becomes the hyperbolic operator

Q0(X)=(K0XA−1
0 ) p f−1

0 ,

because Ct=0=0. Thus, for all small t, I − Qt is uniformly invertible, and
Proposition 8.3 implies that t W (I − Qt)−1 is weakly continuous.

Assertion (c) follows from the Mean Value Theorem and the fact that
the second derivative of Gt is uniformly bounded near the zero section. L

Proof of Theorem D. Proposition 8.6 implies that

Gt(X)=Zt+Qt(X)+Rt(X)

and ||Rt(X)||=O(1) ||X||2 as ||X|| Q 0. Let Pt : x W Px, t be the unique
Gt-invariant section of L with norm [ 1. Thus Px, t : Ex Q H2x and

Ex, t=graph Px, t={v+Px, t(v) ¥ TxM : v ¥ Ex}.
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Theorem D asserts that Et is differentiable at t=0. That is,

dPx, t

dt
:
t=0

exists and is continuous with respect to x.
Plugging X=Pt into the Taylor expansion of Gt gives

Pt=Zt+Qt(Pt)+Rt(Pt),

and since I − Qt is invertible, we get Pt=(I − Qt)−1 (Zt+Rt(Pt)). Thus

||Pt || [ ||(I − Qt)−1|| (||Zt ||+M ||Pt ||2). (10)

(These norms refer to section sup-norms or to operator norms, as
appropriate.)

Now we estimate Zt=(Ct p A−1
t ) p f−1

t as follows. It is differentiable
with respect to t, and since Ct=0=0, we have Zt=0=0. Thus ||Zt ||=O(1) t
as t Q 0. Since Pt is continuous in t, and P0=0, we get ||Pt ||

2
0 ° ||Pt ||0 when

t is small, which lets us absorb the squared term into the l.h.s. of the
inequality (10), so

||Pt ||=O(1) t

as t Q 0. Consequently, we get a bootstrap effect on the remainder:

||Rt(Pt)||=O(1) t2

as t Q 0. Combined with the more exact estimate on Zt,

Zt=tZ −

0+o(1) t

where Z −

0=(d/dt)t=0 (Zt), this gives

Pt

t
=(I − Qt)−1 Z −

0+(I − Qt)−1 (o(1)+O(1) t).

Proposition 8.6 implies that (I − Qt)−1 converges weakly to (I − Q0)−1 as
t Q 0, so

lim
t Q 0

(I − Qt)−1 Z −

0=(I − Q0)−1 Z −

0,
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while uniform boundedness of ||(I − Qt)−1|| implies that

lim
t Q 0

(I − Qt)−1 (o(1)+O(1) t)=0.

Thus, as t Q 0,

Px, t − Px, 0

t
Q (I − Q0)−1 Z −

0,

uniformly in x ¥ M, which completes the proof that t W Et is differentiable
at t=0, and that its derivative there, (I − Q0)−1 Z −

0, depends continuously
on x ¥ M. L

Remark. Suppose that E0 and Dft are C r, r \ 2. We tried to show
that Et is r th-order differentiable at t=0 in the sense that there is an r th

order Taylor expansion for Et at t=0. Many ingredients of the preceding
proof of the r=1 case above generalize very nicely to r \ 2. There is a
natural notion of weak r th-order differentiability, and it behaves well with
respect to operator inversion and operator products. However, we would
also need affirmative answers to the following two questions:

(a) Is the curve t W (I − Qt)−1 in Sec(L) weakly differentiable
at t=0?

(b) Does the operator (I − Q0)−1 send C1 sections of L to C1

sections?

At first, it would be acceptable to assume analyticity of E0 and ft.
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